

Isolation and characterization of *E. coli O157:H7* from human and animals

Afaf, Abdulrahman Yousif ¹*; Donia Hatem Fadhel al-Taii ¹Department of Internal &Preventive Veterinary Medicine, College of Veterinary Medicine, University of Baghdad

ARTICLE INFO

Received: 15.05.2014 Revised: 20.06.2014 Accepted: 29.06.2014 Publish online: 12.07.2014

*Corresponding author: Email address: afaf a.rahman@yahoo.com

Abstract This study was conducted to show the importance of Escherichia coli 0157:H7 as an important zoonotic pathogen, which has ability to transmit from animals to human in

Iraq. One hundred fifty fecal samples (50 stool samples from diarrheal children and 50 from cows and 50 from sheep) were collected for isolation of E. coli O157: H7. All samples were cultured on MacConkey and Eosin Methylene blue agar. Each E. coli growth was confirmed by Gram stain and biochemical tests. Then, all isolated E. coli were sub cultured on Sorbitol MacConkey agar plus cifixime potassium tellurite (SMA-CT). The diagnosis was confirmed by Chrom agar[™] E. coli 0157:H7 and incubated aerobically at 37 C° for 24 hours. Latex agglutination test was used to all isolates of E. coli 0157: H7 to confirm the serotype. The results showed that E. coli were isolated in 40 out of 50 diarrheal children stool samples, where only 2(4%) from these isolates were confirmed as E. coli O157:H7. The number of E. coli isolates from cows and sheep samples were 48 out of 50 and 45 out of 50 respectively, where only 12 (24%) and 10 (20%) isolates were E. coli O157:H7 respectively. The study revealed that most diarrheal cases with positive E. coli O157:H7 were detected in two children aged 1 year and 4 years. In conclusion, this study revealed the importance of human and ruminants to act as a reservoir for Escherichia coli O157:H7.

To cite this article: Afaf, Abdulrahman Yousif; Donia Hatem Fadhel al-Taii. (2014). Isolation and characterization of *E. coli O157:H7* from human and animals. MRVSA. 3 (2), 11-18. DOI: 10.22428/mrvsa. 2307-8073.2014. 00322.x

Keywords: *Escherichia coli O157:H7*, Latex agglutination test, Sorbitol MacConkey agar, Chrom agar™ E. *coli*.

Introduction

Escherichia coli O157:H7, was first identified as a human pathogen in 1982 (Riley *et al.*, 1983). Enterohemorrhagic *Escherichia coli (EHEC) O157:H7* is an emerging pathogen that causes acute human gastroenteritis and hemorrhagic colitis (Rabinovitz *et al.*, 2012). Enteropathogenic *Escherichia coli (EPEC)* is the most

important cause of persistent diarrhea in children, particularly in developing countries. Animals serve as reservoirs for pathogenic E. coli, and compelling evidence for cross-species EPEC transmission exists (Swennes et al., 2012). The main reservoir for this group is bovine bowels, and infection mainly occurs after ingestion of contaminated water and food (Regua-Mangia et al., 2012). Cattle are the principal reservoir of E. coli O157:H7 and the rumen has been shown to harbor this pathogen. It is found in the distal portion of the bovine gastrointestinal (GI) tract, with the recto-anal junction identified as the predominant colonization site (Naylor et al., 2003; Arthur et al., 2010). Once colonized, an animal can shed E. coli O157:H7 organisms in the feces. These animals have been referred to as supershedders and are reported to be responsible for increased transmission of E. coli O157:H7 within cattle production environments, as well as having effects on contamination of the cattle hide and carcass (Chase-Topping *et al.*, 2008). The STEC has also been isolated from the feces of other farm animals, including other ruminants such as sheep, and water buffalo, and non-ruminants (horses, dogs, rabbits, and pigs) (Ørskov et al., 1987; Caprioli et al., 2005). Escherichia coli 0157:H7 has been found in cattle faces from most areas of North America, Canada, United Kingdom, Scotland, Netherlands, Finland, Italy, Japan, France, South America, and Australia suggesting that this organism is ubiquitously present on cattle farms. There are however, other regions, such as Scandinavia, Africa, and Norway that report a very low prevalence of E. coli O157:H7 (Johnsen et al., 2001; Vold et al., 1998). The aim of this study was to isolate and characterize E. coli O157:H7, in addition to investigate the rate of infection in children and animals.

Materials and Methods

Samples

• Fifty stool samples were collected from children suffering from diarrhea of both genera less than 10 years of old from Pediatric Hospital.

• One hundred fecal samples (50 from cows and 50 from sheep) were collected from field's animal.

Isolation and Characterization of E. coli O157:H7

Culturing and Biochemical tests were done according to (Quinn *et al.*, 2004). All fecal samples were cultured on MacConkey and eosin methylene agar and incubated at 37 C° for 24 hours (Al- awwadi *et al.*, 2012). The Kligler Iron medium (KI), Ureas test, Indole test, Motility and Citrate utilization were the biochemical tests, which have been done on all suspected colonies. The confirmation of *E. coli O157:H7* was done by culturing of suspected colonies on Sorbitol MacConkey agar plus cifixime potassium tellurite (SMA-CT), then culturing on Chrom agarTM *E*. *coli O157:H7*. The serotyping of isolated bacteria was confirmed by *E. coli O157* Latex agglutination test (Kit from Wellcolex *E. coli O157:H7*, Remel). **Results and Discussion**

E. coli isolation

Different morphological shape and color of E. coli colonies were appeared on different media. The colonies revealed red /pink color On MacConkey agar and metallic sheen on Eosin Methylene Blue. The Gram stain of suspected E. coli colonies revealed, negative non-spore forming rod. The isolated bacteria gave different reaction in biochemical tests. It gave negative for oxidase, simmon citrate, Urease tests and positive for indole and motility tests. The Kligler Iron test showed Yellow/Yellow with gas production. The suspected colonies of EHEC appeared small, circular and colorless with smoky center (1-2) mm in diameter on SMA-CT. On Chrom agar the colonies of E. coli O157:H7 showed mauve color. Escherichia coli O157:H7 are commonly identified by culturing on different media and sorbitol MacConkey agar supplemented with cefixime and potassium tellurite (CT-SMAC), this result was compatible with (Chapman et al., 1991). Our results showed that Chrom agar aids in diagnosis of E. coli 0157:H7. E. coli 0157:H7 utilizes one of chromogenic substrates and produce mauve colored colonies. While non- E. coli 0157:H7 organism may utilize chromogenic substrates resulting in blue to blue green colored colonies. These observations are in agreement with Bettelheim, (1998); Tarr et al., (2005); Philips et al., (2005) and Tavakoli et al., (2008). They recorded that the using of Chromogenic media have more advantage and can be an appropriate alternative for conventional and routine procedure. Ngwa et al., (2013) also found that the Chrom agar is an effective supplemental medium for the isolation of probable STEC strains.

Serotyping test (Wellcolex E. coli O157:H7, Remel)

Escherichia coli colonies from (SMA-CT) were tested for identification of both *O157:H7* antigens by Wellcolex *E. coli O157:H7*, Remel. The isolates that gave a positive reaction for the *O157* antigen were sub-cultured overnight on blood agar for the detection of flagellar antigen (*H7*). Red color agglutination indicated a positive result for (O antigen) in comparison to clear red color of the control and the blue color agglutination indicated positive result for (H antigen) in comparison to clear blue color of the control. Results agree with March and Ratnam, (1989), who evaluated latex test as a rapid test for diagnosis of *E. coli* serotype *O157:H7*. However, Karmali *et al.*, (1999) showed that this test method is highly sensitive and specific for the diagnosis of *E. coli* isolates. The test is rapid, reliable, and easy to perform, its results are easy to interpret and it should allow testing for VT to become more widely performed.

Prevalence of infection with E. coli O157:H7 in diarrheal Children

Stool samples that collected from diarrheal children revealed that 40 out of 50 were positive to *E. coli*. There were only 2 isolates from this 40 *E. coli* were positive to *E. coli* O157:H7 at a percentage (4 %) (Table1).

 Table (1): Rate of infection of E. coli O157:H7 in children

Origin of samples	No. of samples	Total No. of <i>E.coli</i>	No. of <i>E.coli</i> 0157:H7	%
Children stool	50	40	2	4%

These results showed that the rate of infection in stool samples were 4%, which is in agreement with Máttar et al., (1997). They recorded that the prevalence of E. coli O157:H7 was 4.7% in children with acute gastroenteritis. In Basra/ Iraq, E. coli O157:H7 was isolated by Khudor et al., (2011) at a percentage (5.7%) from stool in diarrheal patients. Previous studies in Iraq were compatible with the results of the present study. Also, Basil et al., (2012) isolated Verotoxigenic E. coli O157:H7 from Raw milk Using Duplex PCR, and Al- awwadi et al., (2012) reported E. coli 0157:H7 serotype as a causative agent of bloody diarrhea in children at the same isolation percentage 4%. Another study in Iraq (Al –Dawmy and Yousif, 2013) revealed the importance of Escherichia coli O157:H7 as a children pathogen and a causative of a severe intestinal and urinary tract infection from birth to ten years. However, other studies recorded lower percentage of infection with E. coli O157:H7 in children (Vally et al., 2012). In addition, Elaine et al., (2013) recorded that proportion of E. coli O157:H7 from diarrheal cases of children in USA. In Iran, Aslani et al., (2003); Salmanzadeh-Ahrabi et al., (2005) and Jomezadeh et al., (2009) recorded that E. coli O157:H7 is a common cause of bloody diarrhoea in developed countries, but its incidence in developing countries including Iran is not clear. The limited prevalence data in foods and animals has made the assessment of risks difficult, also the options for management and control are unclear. A few studies have reported the isolation and characterization of STEC in humans in Iran. The number of E. coli isolates in cows fecal samples were 48 out of 50 samples and only 12 isolates gave positive results to E. coli O157:H7 at a percentage (24%). However, sheep fecal samples revealed 45 E. coli isolates out of 50 fecal samples and 10 isolates characterized as E. coli O157:H7 (Table 2).

Origin of	No. of	Total No.	No. of	%
samples	samples	of E.coli	E.coli	
			O157:H7	
Cows fecal	50	48	12	24%
samples				
Sheep fecal	50	45	10	20%
samples				

Table (2) Rate of infection of E. coli O157:H7 in animals

The results of *E. coli O157:H7* isolation from cows and sheep was similar to other researcher, Matthews *et al.*, (2006). They presented data suggesting that 20% of the *E. coli O157:H7* infections in cattle on Scottish farms were responsible for 80% of the transmission of the organism between animals. Another study showed that 9% of the animals shedding *E. coli O157:H7* at harvest produced over 96% of the total *E. coli O157:H7* fecal load for the group (Omisakin *et al.*, 2003). Arthur *et al.*, (2009) have shown that 95% of feedlot pens containing at least one super shedder had *E. coli O157* prevalence rates on cattle hides exceeding 80%. The results of Keen

and Elder (2002) suggested that viable STEC 0157 may be isolated from the oral cavity, hide surfaces, and feces of a high percentage of fed beef cattle and that bacterial culture of feces alone generally underestimates the percentage of fed beef cattle from which STEC 0157 can be isolated. Al-Charrakh and Al-Muhana, (2010) found that dairy cattle had been implicated as principal reservoir of Verotoxin-Producing E. coli (VTEC), with undercooked ground beef and raw milk being the major vehicles of food borne outbreaks. VTEC had been implicated as an etiological agent of individual cases and outbreaks in developed countries. The epidemiology of E. coli O157:H7 in sheep is similar to that of cattle. It is including the transient faecal excretion in individual sheep, with a higher prevalence detected in the summer, which is ranging from 31% positive in June (Kudva et al., 1996). The prevalence levels for individual sheep in the United Kingdom was ranged from 2.2 to 7.4% (Chapman *et al.*, 2001). The study also showed that sheep may shed at the same time more than one strain of E. coli O157:H7. In addition, the excretion of E. coli O157:H7 does not prevent re-colonization of sheep with E. coli O157:H7 (Kudva et al., 1997).

In conclusion, this study showed that cattle and sheep were acted as the main natural reservoir for *E. coli O157:H7* and able to transmit the disease to human.

References

Al Awwadi N A J, Alshimary A S, Al kafaji H J H, Al badry H S, Wanys Z (2013). The detection of shiga toxin producing *E. coli* (O157: H7) infection in children diarrhea in nasseriya city. GJPAST. 3, 1: 1 - 06.

Al–Dawmy A A Faten and Yousif Afaf Abdulrahman (2013). Prevalence of *E.coli O157:H7* in intestinal and Urinary tract infection in children. International Journal of Advanced Research. 1, 8: 111-120.

Al-Charrakh A and Al-Muhana A. (2010). Prevalence of verotoxin-producing *Escherichia coli (VTEC)* in a survey of dairy cattle in Najaf, Iraq. Iran. J. Microbio. 2 (3): 128-134.

Arthur T M, Keen J E, Bosilevac J M, Brichta Harhay D M, Kalchayanand N, Shackelford S D, Wheeler, T L, Nou X, Koohmaraie M. (2009). Longitudinal study of *Escherichia coli* O157:H7 in a beef cattle feedlot and role of high-level shedders in hide contamination. Appl. Environ. Microbiol. 75:6515–6523.

Arthur TM, Dayna M, Brichta-Harhay, Joseph M Bosilevac, Norasak Kalchayanand, Steven D Shackelford, Tommy L Wheeler, Mohammad Koohmaraie. (2010). Super-shedding of *Escherichia coli O157:H7* by cattle and the impact on beef carcass contamination. Meat Science. 86, 32–37.

Aslani M M and Bouzari S. (2003). An epidemiological study on Verotoxinproducing *Escherichia coli* (*VTEC*) infection among population of northern region of Iran (Mazandaran and Golestan provinces) Eur J Epidemiol. 18:345–349.

Basil A Abbas, Khudor M H and Abid Smeasem O I. (2012). Detection of Verotoxigenic E. coli O157:H7 in Raw milk Using Duplex PCR. Mirror of research in veterinary sciences and Animals (MRVSA). 1 (1): 25-33.

Bettelheim K A (1998). Studies of *E. coli* cultured on Rainbow agar *O157* with particular reference to enterohaemorrhagic *E. coli*. Microbiol. Immunol. 42: 265–269.

Caprioli A, Morabito S, Bruge`re, H. and Oswald E. (2005). Enterohaemorrhagic Escherichia coli: emerging issues on virulence and modes of transmission. Vet Res. 36, 289–311.

Chapman P A, Siddons C A, Zadik P M and Jewes L. (1991). An improved selective medium for the isolation of Escherichia coli O157. J. Med. Microbiol. 35:107-110.

Chapman P A, Cerdán Malo A T, EllinM, Ashton R, Harkin M A. (2001). *Escherichia coli O157* in cattle and sheep at slaughter, on beef and lamb carcasses and in raw beef and lamb products in South Yorkshire, UK. international journal of food microbiology - Int J. Food Microbiol . 64, 1:139-150.

Chase-Topping M, Gally D, Low C, Matthews L, Woolhouse M, Elaine S, Barbara E M, Robert M H, Griffin Patricia M G. (2013). Estimates of Illnesses, Hospitalizations and Deaths Caused by Major Bacterial Enteric Pathogens in Young Children in the United States. The Pediatric infectious disease journal. 32(3):217-221.

Johnsen G, Wasteson Y, Heir E, Berget O I and Herikstad H. (2001). *Escherichia coli O157:H7* in faeces from cattle, sheep and pigs in the southwest part of Norway during 1998 and 1999. International Journal of Food Microbiology, vol. 65, 3:193–200, 2001.

Jomezadeh N, Farajzadeh Sheikh A, Khosravi AD Amin M. (2009). Detection of Shiga Toxin Producing *E. coli* Strains Isolated from Stool Samples of Patients with diarrhea in Abadan Hospitals. Iran J Biolog Sci. 9: 820 -824.

Karmali M A, Petric M, Bielaszewska M. (1999). Evaluation of a microplate latex agglutination method (Verotox-F Assay) for detecting and characterizing verotoxins(Shiga Toxins)in *Escherichia coli*. J.Clin Microbiol. 37:396–399.

Keen J E, Elder RO. (2002). Isolation of shiga-toxigenic *Escherichia coli O157* from hide surfaces and the oral cavity of finished beef feedlot cattle. J Am Vet Med Assoc 220: 756–763.

Khudor M H, Issa A H and Jassim FL. (2012). Detection of *rfbO157* and *fliCH7* Genes in *Escherichia coli* isolated from Human and Sheep in Basra Province. Raf. J. Sci. 23, 1:19-33.

Kudva I T, Hatfield P G, and Hovde CJ. (1996) *Escherichia coli O157:H7* in microbial flora of sheep. J. Clin. Microbiol. 34:431-433.

Kudva IT, Hatfield PG and Hovde CJ. (1997). Characterization of *Escherichia coli* O157:H7 and other Shiga toxin-producing E. coli serotypes isolated from sheep. J. Clin. Microbiol. 35:892-899.

March S B and Ratnam S. (1986). Sorbitol-MacConkey medium for detection of *Escherichia coli* O157:H7 associated with hemorrhagic colitis. J. Clin. Microbiol.23:869-872.

Máttar S, Mora A, Bernal N. (1997). Prevalence of *E. coli* O157:H7 in a pediatric population in Bogotá, D.C. with acute gastroenteritis. Enferm Infecc Microbiol Clin. 15(7):364-8.

Matthews L, Low JC, Gally DL, Pearce MC, Mellor DJ, Heesterbeek JA, Chase-Topping M, Naylor SW, Shaw DJ, Reid SW, Gunn GJ, Woolhouse ME. (2006). Heterogeneous shedding of *Escherichia coli* O157 in cattle and its implications for control. Proc. Natl. Acad. Sci. U SA.103:547–552.

Naylor S W, Low J C, Besser T E, Mahajan A, Gunn G J, Pearce M C, McKendrick I J, Smith D G, Gally D L (2003). Lymphoid follicle-dense mucosa at the terminal rectum is the principal site of colonization of Enterohemorrhagic *Escherichia coli O157, H7* in the bovine host. Infect. Immun. 71: 1505–1512.

Ngwa G A, Schop R, Weir S, León-Velarde C G, Odumeru J A. (2013). Detection and enumeration of E. coli O157:H7 in water samples by culture and molecular methods. J Microbiol Methods. 15, 92 (2):164-72.

Omisakin F. MacRae M. Ogden ID, et al. (2003). Concentration and prevalence of Escherichia coli O157 in cattle feces at slaughter. Appl Environ Microbiol. 69:2444–2447.

Ørskov F, Ørskov V and Villar J A. (1987). Cattle as reservoir of verotoxinproducing *Escherichia coli* O157:H7. *Lancet* 2, 276.

Phillips B, Tyerman, K and Whiteley S M. (2005). Use of antibiotics in suspected haemolytic-uraemic syndrome. Br. Med. J. 330:409-410.
Quinn P J, Carter M E, Markey B and Carter G R. (2004). Clinical Veterinary microbiology. 6th ed. Mosby an imp. Wolf, London.66 – 85.

Rabinovitz B C, Gerhardt E, Tironi Farinati C, Abdala A, Galarza R, Vilte D A, Ibarra C, Cataldi A, Mercado E C (2012). Vaccination of pregnant cows with EspA, EspB, Y-intimin, and Shiga toxin 2 proteins from *Escherichia coli* O157:H7 induces high levels of specific colostral antibodies that are transferred to newborn calves. J Dairy Sci. 95:3318–3326.

Regua-Mangia A H, **Gonzalez A G M**, **Cerqueira MFA**, **Andrade J R C (2012)**. Molecular characterization of *Escherichia coli* O157:H7 strains isolated from different sources and geographic regions. Journal of veterinary science. 13 (2):139-44.

Riley LW, Remis RS, Helgerson SD, McGee HB, Wells JG, Davis BR. (1983). Hemorrhagic colitis associated with a rare *Escherichia coli* serotype. N Engl J Med.308:681–5.

Salmanzadeh-Ahrabi S, Habibi E, Jaafari F, Zali MR (2005). Molecular epidemiology of *Escherichia coli* diarrhoea in children in Tehran. Ann Trop Paediat. 25: 35-39

Swennes A G, Ellen M. Buckley, Nicola M. A. Parry, Carolyn M. Madden, Alexis García, Peter B. Morgan, Keith M. Astrofsky and James G Fox. (2012). A Enzootic Enteropathogenic Escherichia coli Infection in Laboratory Rabbits. J. Clin. Microbial. 50(7):2353.

Tarr PI, Gordon CA and Chandler W L. (2005). Shiga-toxinproducing*Escherichia coli* and haemolytic uraemic syndrome. Lancet 365:1073-1086.

Tavakoli H, Bayat M, Kousha A and Panahi P. (2008). The Application of Chromogenic Culture Media for Rapid Detection of Food and Water Borne Pathogen. American-Eurasian J. Agric. & Environ. Sci. 4 (6): 693-698.

Vally H, Hall G, Dyda A, Desmarchelier J. (2012). Epidemiology of Shiga toxin producing *Escherichia coli* in Australia, 2000-2010. BMC Public Health. 12:63.

Vold L, Klungseth Johansen B, Kruse H, Skjerve E, and Wasteson Y. (1998). Occurrence of Shigatoxigenic *Escherichia coli O157* in Norwegian cattle herds. Epidem. Infect. 120:21-28.